A Diversity Production Approach in Ensemble of Base Classifiers
نویسندگان
چکیده
One of crucial issue in the design of combinational classifier systems is to keep diversity in the results of classifiers to reach the appropriate final result. It's obvious that the more diverse the results of the classifiers, the more suitable final result. In this paper a new approach for generating diversity during creation of an ensemble together with a new combining classifier system is proposed. The main idea in this novel system is heuristic retraining of some base classifiers. At first, a basic classifier is run, after that, regards to the drawbacks of this classifier, other base classifiers are retrained heuristically. Each of these classifiers looks at the data with its own attitude. The main attempts in the retrained classifiers are to leverage the error-prone data. The retrained classifiers usually have different votes about the sample points which are close to boundaries and may be likely erroneous. Like all ensemble learning approaches, our ensemble meta-learner approach can be developed based on any base classifiers. The main contributions are to keep some advantages of these classifiers and resolve some of their drawbacks, and consequently to enhance the performance of classification. This study investigates how by focusing on some crucial data points the performance of any base classifier can be reinforced. The paper also proves that adding the number of all "difficult" data points just as boosting method does, does not always make a better training set. Experiments show significant improvements in terms of accuracies of consensus classification. The performance of the proposed algorithm outperforms some of the best methods in the literature. Finally, the authors according to experimental results claim that forcing crucial data points to the training set as well as eliminating them from the training set can lead to the more accurate results, conditionally.
منابع مشابه
Classifier Ensemble Framework: a Diversity Based Approach
Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...
متن کاملFault Detection of Bearings Using a Rule-based Classifier Ensemble and Genetic Algorithm
This paper proposes a reduct construction method based on discernibility matrix simplification. The method works with genetic algorithm. To identify potential problems and prevent complete failure of bearings, a new method based on rule-based classifier ensemble is presented. Genetic algorithm is used for feature reduction. The generated rules of the reducts are used to build the candidate base...
متن کاملOptimum Ensemble Classification for Fully Polarimetric SAR Data Using Global-Local Classification Approach
In this paper, a proposed ensemble classification for fully polarimetric synthetic aperture radar (PolSAR) data using a global-local classification approach is presented. In the first step, to perform the global classification, the training feature space is divided into a specified number of clusters. In the next step to carry out the local classification over each of these clusters, which cont...
متن کاملاستفاده از یادگیری همبستگی منفی در بهبود کارایی ترکیب شبکه های عصبی
This paper investigates the effect of diversity caused by Negative Correlation Learning(NCL) in the combination of neural classifiers and presents an efficient way to improve combining performance. Decision Templates and Averaging, as two non-trainable combining methods and Stacked Generalization as a trainable combiner are investigated in our experiments . Utilizing NCL for diversifying the ba...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملA Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows
One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012